How to Work with Time Format Data in Data.olllo AI Chat
With Data.olllo AI Chat, you can transform and format date/time data without memorizing complex syntax. Just describe what you need, and the AI will generate a ready-to-run process(dfs)
function for you.

Screenshot example: Enter your requirement → Data.olllo writes and runs the correct code
1. Convert Numeric Timestamps to Readable Dates
If your dataset stores time as Unix timestamps (e.g., 1691491200
), convert them to human-readable datetimes:
def process(dfs): df = dfs["df"] df["timestamp"] = pd.to_datetime(df["timestamp"], unit="s") return df
2. Convert Datetime to Numeric Timestamps
Reverse the process and get seconds since Unix epoch for storage or comparison:
def process(dfs): df = dfs["df"] df["created_at"] = pd.to_datetime(df["created_at"]).astype("int64") // 10**9 return df
3. Extract Specific Parts of a Date or Time
Get only the parts you need, like year or month:
def process(dfs): df = dfs["df"] df["year"] = pd.to_datetime(df["order_date"]).dt.year df["month"] = pd.to_datetime(df["order_date"]).dt.month return df
4. Convert String Dates to Datetime Objects
Turn text-formatted dates into real datetime objects:
def process(dfs): df = dfs["df"] df["date_str"] = pd.to_datetime(df["date_str"]) return df
5. Format Datetime into Custom Strings
Output dates in your preferred style, e.g., MM/DD/YYYY
:
def process(dfs): df = dfs["df"] df["created_at"] = pd.to_datetime(df["created_at"]).dt.strftime("%m/%d/%Y") return df
💡 Pro Tips
- If your timestamps are in milliseconds, use
unit="ms"
inpd.to_datetime
. - Always specify the exact column name and target format in your prompt.
- You can combine multiple extractions, e.g., get both year and weekday.