How to Work with Time Format Data in Data.olllo AI Chat
With Data.olllo AI Chat, you can transform and format date/time data without memorizing complex syntax. Just describe what you need, and the AI will generate a ready-to-run process(dfs) function for you.

Screenshot example: Enter your requirement → Data.olllo writes and runs the correct code
1. Convert Numeric Timestamps to Readable Dates
If your dataset stores time as Unix timestamps (e.g., 1691491200), convert them to human-readable datetimes:
def process(dfs):
df = dfs["df"]
df["timestamp"] = pd.to_datetime(df["timestamp"], unit="s")
return df2. Convert Datetime to Numeric Timestamps
Reverse the process and get seconds since Unix epoch for storage or comparison:
def process(dfs):
df = dfs["df"]
df["created_at"] = pd.to_datetime(df["created_at"]).astype("int64") // 10**9
return df3. Extract Specific Parts of a Date or Time
Get only the parts you need, like year or month:
def process(dfs):
df = dfs["df"]
df["year"] = pd.to_datetime(df["order_date"]).dt.year
df["month"] = pd.to_datetime(df["order_date"]).dt.month
return df4. Convert String Dates to Datetime Objects
Turn text-formatted dates into real datetime objects:
def process(dfs):
df = dfs["df"]
df["date_str"] = pd.to_datetime(df["date_str"])
return df5. Format Datetime into Custom Strings
Output dates in your preferred style, e.g., MM/DD/YYYY:
def process(dfs):
df = dfs["df"]
df["created_at"] = pd.to_datetime(df["created_at"]).dt.strftime("%m/%d/%Y")
return df💡 Pro Tips
- If your timestamps are in milliseconds, use
unit="ms"inpd.to_datetime. - Always specify the exact column name and target format in your prompt.
- You can combine multiple extractions, e.g., get both year and weekday.